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New developments in infrared sensor technology have potentially made pos- 
sible a new space-based system which can measure far-infrared radiation at 
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Center, makes use of new detector array technology. A mathematical model 
which simulates resolution and spectral range relationships has been devel- 
oped for analyzing the utility of such a radically new approach to spec- 
troscopy. Calculations with this forward model emulate the effects of a 
detector array on the ability to retrieve accurate spectral features. Initial 
computations indicate significant attenuation at high wavenumbers. 

1 Introduction 

Passive remote sensors being used for atmo- 
spheric observation are often Michelson inter- 
ferometers, which usually are larger instruments 
that gather interferometric data utilizing a mov- 
ing mirror. The use of laser metrology for de- 
termining exact mirror displacements and the 
power consumption of extra components such as 
motors and telemetry to report mirror positions 
make them a costly intstrument.[l] 

The SIFTS system (Stationary Infrared 
Fourier Transform Spectrometer), as proposed 
by the NASA Langley Research Center, would 
use the stationary interferometry of a Common- 
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path (also known as a Sagnac) interferometer 
and take distinct advantage of continuing ad- 
vances in infrared detector arrays. Since it would 
require no moving parts, the mass and power lim- 
itations of spacebased sensors will be more easily 
realized. 

Virtual source configurations have the advan- 
tage of a minimum of optical components and 
fixed placement of those components. Of the vir- 
tual source configurations, the Common-Path in- 
terferometer was chosen because of its high yield 
of incident energy captured on a detector array. 
Furthermore, as the name implies, the two beams 
that it produces follow a common path. There- 
fore, any disturbance in one arm of the interfer- 
ometer will affect both beams and no resultant 
changes will occur in the interference pattern. 
The result is an instrument that is inherently in- 
sensitive to vibrations. 

Because of the absence of definitive experimen- 
tal data in the far infrared region of the earth's 
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emission spectrum, the intended range of SIFTS 
is 10-1000 pm. Examination of this region is 
of great importance because up to half of the 
outgoing radiation of the earth occurs at these 
wavenumbers. Water vapor is known to radi- 
ate in this region, creating a large data gap in 
stratospheric chemistry, climate forecasting and 
tropospheric cooling by radiative emission. Also, 
cirrus clouds are known to block far-IR radiation, 
but the degree is not known due to lack of o b  
servational data. [l] 

Many commercial applications also exist such 
as industrial process control in paper production 
and environmental monitoring of smokestack 
gas emissions. SIFTS would enhance the abil- 
ity to do qualitative and quantitative chemical 
measiirements. [I] 

son will create an optical path length difference 
(OPD) and resulting fringe pattern, the process 
by which this interference pattern is created and 
represented digitally will be different despite the 
pattern being the same. Since the Michelson will 
be scanned incrementally, the fringes of the in- 
terference effectively collapse to a point and thus 
only a single detector element is required. 

However, the SIFTS system will display the 
whole interference pattern on a multi-element de- 
tector array allowing for faster data acquisition, 
but different issues relating to resolution. The 
resolution of SIFTS will be limited by the num- 
ber, size, and placement of the detector elements. 
Unlike the Michelson, simply increasing the path 
length difference to get higher resolution is not 
easily done. Therefore, analysis of the effects of 
the detector array on the ability to reproduce 
true spectral features will be essential in the de- 
velopment of the sensor and its evaluation. 

Previous investigations done with multi- 
element detector arrays by NASA indicate that 
wavenumber resolutions of 1-2 cm-' should be 
attainable with 500 to 1,000 detector elements in 
an array. [ 11 The spectral resolution of SIFTS will 
ultimately depend on the number of elements in 
the array used and will be limited by the Nyquist 
Criterion. 

The goal of the present research is to develop 
a computational model that takes a particular 

Where2S hnth the SIFTS systerr, mc! 2 Miche!- 

spectrogram and computes the inteferogram that 
the Common Path interferometer produces. The 
model can then use the characteristics of a hypo- 
thetical detector array (e.g., number of detectors, 
fill factor, nonuniformity) to calculate what the 
retrieved spectrum will look like. The model will 
allow us to determine how various detector char- 
acteristics effect the resolution of the instrument. 

2 The Computational Model 

2.1 Notation 

The SIFTS system will differ from a Michelson 
in both the way that the interferogram is created 
and the way it is converted to a discrete set of 
digit.! data via the detector zrmy The interfer- 

onto the detector array. Because a detector av- 
erages across its active area, the width of each 
pixel is analogous to the limitation due to the 
size of the mirror movement increments in the 
Michelson. It is assumed that the interferogram 
will have a scalable width so the entire array will 
receive radiation. Then for SIFTS the ratio of 
the width of each pixel to the size of the inter- 
ferogram is analogous to the ratio of the size of a 
mirror increment to the total distance the mirror 
travels in the Michelson. 

Because of these differences, relationships need 
to be specified for the SIFTS system. A 
mathematical relation exists between the m a -  
imum and minimum OPDs ( x m u  and xmin), the 
maximum and minimum unaliased wavenumbers 
(omax and urnin), and the respective resolutions 
of the interferogram and spectrogram, Ax and 
Au. Note that o z X-l(cm-l) = with c in 
cm/sec. Variables representing parameters after 
the radiation has been detected by the array will 
be denoted with a prime. For example, Auf is 
the spectral resolution of the retrieved spectrum 
and Axf is the effective detector width. 

Real spectral emmissions are continuous, but 
any data for used as input spectrograms will be 
discrete. Therefore, the model will produce an 
artificially discrete interferogram rather than the 
continuous interferogram that the actual SIFTS 
system will produce. The model calculates how 
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SIFTS Mathematical Modeling Approach 

Modeled Interferogram: 
f(x3 

Figure 1: Schematic diagram of the SIFTS Modeling Approach. 

the discrete inteferogram is imaged by the dis 
Crete detector array. We will use N to denote 
the number of points in an original atmospheric 
spectrum and N’ for the number of detectors. In 
order to better simulate reality, we will need to 
make sure that N is sufficiently larger than N’. 
The number of detectors N will also determine 
the maximum number of points that can be used 
in the calculation of the retrieved spectrum. 

Figure 1 illustrates in schematic form the im- 
portant features of the computational model. 
The model is written in MAT LAB^ because of its 
ease of handling discrete data and exceptional 
graphing capabilities. 

2.2 The Forward Model 

The computational model is comprised of two 
separate phases: the forward model and the re- 
trieval phase. The forward model takes data 
from an atmospheric spectrum that may con- 

~~~~ ~~~ 

‘The Mathworks, Inc., 3 Apple Hill Drive, Natick, MA 
01760; www.mathworks.com. 

sist of data derived from previous experiment 
or, for testing purposes, a fabricated spectrum. 
This initial spectrogram is called F(a) .  Then, 
the forward model uses an Inverse Discrete 
Fourier Transform (IDFT) to convert the spec- 
trum into the digitally simulated interference 
pattern called f(z). See Fig. 1. 

Once the simulated interference pattern is gen- 
erated, four parameters are needed to realisti- 
cally simulate the detector array. These param- 
eters are necessary because of the effects caused 
by the pixelization of the interferogram. They 
include: 

1. averaging the incident radiation across the 
pixel’s active area 

2. the percentage of the detector element width 
that is actually sensitive, called the “fill fac- 
tor7, 

3. non-uniformity of the detector elements 

4. the background and/or photon noise en- 
countered by all detectors. 
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The output of the forward model is a simulated 
interferogram f‘(z’) that accounts for the effects 
of pixelization by the detector array. Thus, the 
effects on the inteferogram of various detector 
characteristics can be studied. The symbol Ax’ 
represents the pixel spacing, z& represents the 
total length of the array, and N‘ is the total num- 
ber of detector elements. 

In summary, the order of the forward model 
is: 

F ( a )  t IDFT t f(z) --+ Pixelization t f’(z’) 

2.3 The Retrieval Phase 

Once the inteferogram as “seen” by the detector 
array is simulated, the retrieval phase of the com- 
putational model converts f’(z’) into a spectro- 
gram using a Discrete Fourier Transform (DFT). 
This retrieved spectrum F’(a’) can then be com- 
pared to the original spectrum F ( a )  in order to 
determine the accuracy with which SIFTS mea- 
sures the spectrum. Standard mathematical pro- 
cessing techniques are used in this phase. These 
processes will be discussed in Section 3. 

The order of the retrieval phase is: 

f’(z’) t Processing --f DFT + F’(a’) 

3 Mat hemat ical Review 

3.1 The Discrete Fourier Transform 

Equation (1) shows how a computer calculates 
the discrete Fourier transform of f(z). 

j=l 

For spectroscopy, F ( a )  signifies the spectrogram, 
(i.e., the discrete representation of the spectral 
features), and the interferogram is f(z). A com- 
monly used shorthand notation for Eq. (1) is 

which means that the discrete Fourier transform 
of f(z) is F(a) .  Equation (3) is used for cal- 
culating the inverse discrete Fourier transform, 

which also happens to be the Fourier transform 
of F(cr).[4] 

N 

(3) 
j=l 

In these equations, N denotes the number of 
data points in the spectrogram or interferogram. 
When considering pixelized data sets created by 
the forward model, the appropriate prime nota- 
tion would need to be used in Eqs. (1, 3). 

3.2 Convolution 

Convolution is a very unique and useful tool 
within the mathematics of Fourier transforms. 
it aiinyly states that tk Fourier trznsform of 
a product of two functions wiii be the producl 
of the separate functions’ Fourier transforms. [2] 
Often the symbol * is used to represent the con- 
volution operator: 

The convolution operation is a valuable tool 
because it allows a function to be modified so 
that the outcome in the transformed domain is 
improved. 

3.3 Apodization 

Literally speaking, apodization means foot 
removal. [3] When considering Fourier spec- 
troscopy, the experimentally determined OPDs 
will always be finite. In the computational model 
for SIFTS the pixels in the array will be of finite 
width and number. However, a Fourier trans- 
form calculation always assumes infinite bounds. 
Therefore, modifications have to be made to 
the computations so as to emulate infinite data 
sets.[2] 

The need for foot removal comes when we look 
at what the Fourier transform is doing with dis- 
crete data. Since it assumes infinite data, the 
finite data created computationally (or collected 
experimentally) must be multiplied by some boz- 
car function that is one throughout the defined 
domain and zero everywhere else. Because it is 
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If more samples are taken (or more detectors 
of fixed width are used), the result is a longer 
interferogram with greater xma. Intuitively, it 
should be clear that the longer an interferogram 
is, the greater the available frequency resolution. 
For overlaping waves, smaller differences in fie- 
quency will take longer to show up. It turns out 
that the exact relationship is given by[2] 

true that 

and by definition 

we have as a result 

When a DFT is used to retrieve a spectrogram, 
such as F ( u ) ,  it will be distorted by a sinc func- 
tion. The sinc function has lobes on both sides 
of a central peak. These lobes will create sym- 
metric feet rifiging ~ E C X ~ S  on pe& ili F(aj 
that represent faise sources of spectrai energy at 
nearby wavenumbers. 

In order to combat this unrealistic compu- 
tational effect, the data is multiplied by some 
apodizing, or window, function that does not 
have such abrupt changes as a boxcar function.[2] 
Given a symmetric interferogram, these func- 
tions will be of a rounded nature such as a gaus- 
sian curve or a half-period cosine wave that will 
be one at zero OPD and will slowly taper the 
ends of the interferogram by reaching zero at  the 
extremes of the domain. The combined effect is 
a weighting of data near the origin against data 
at the extremes of the domain. 

Many such window functions exist and each 
is used when deemed appropriate for its situa- 
tion. Under optimal conditions, the apodizing 
function will minimize the deleterious effects of 
finite data. However, the cost is widened peaks 
and, therefore, lower resolution. 

3.4 Maximum Resolutions 

The relationship between resolution and sam- 
pling determines the maximum resolution avail- 
able for the simulated interferogram f(z) given 
the number or data points N in the input spec- 
trogram. It also determines the maximum reso- 
lution that can be acheived in the retrieved spec- 
trum F'(a') given the number of detector ele- 
ments in the array. 

( 5 )  
1 ACT=- 

Xmax 

The same type of relationship exists when go- 
ing the other direction. The largest frequency 
in the spectrogram determines the spatial reso- 
lution of the interferogram: 

1 Az=- 
amax 

The problem of aliasing further limits the max- 
imum theoretical resolution. The Nyquist cri- 
terion states that for every N data elements, 
only distinct frequencies can be derived be- 
fore aliasing provides false characteristics. [3] For 
SIFTS, this has direct implications on the abil- 
ity to achieve high resolution spectral retrievals 
since the number of data elements will be limited 
by the number of detectors present in the sensor 
system. 

Because the wavenumber c is a spatial fre- 
quency, l/umax is the smallest spatial period. To 
meet the Nyquist criterion, we must take at least 
two samples every spatial period. Thus, 

(7) 
1 

  AX 5 - 
umax 

Since 
AX = xmax 

1 
2 amax 

we have 
Xmax 7 5 -  

Substituting in Eq. ( 5 )  and rearranging, the 
relation becomes: 

(8) 
AaN 

2 amax I - 
Or in terms of the interferogram: 

AxN 
2 xmax I - (9) 
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These relations giving the maximum possible 
resolutions are valid for both the calculation of 
the simulated interferogram and fo the calulation 
of the retrieved spectrum. For any calculation 
after the model simulates the the effects of the 
detector array, the primed notation is used. 

4 Computational Model Code 

4.1 Formulating Spectra and Interfer- 
ograms 

The forward model will test the effects of the 
SIFTS sensor by first establishing an “Original 
Spectrum”. Such a spectrum, as shown in the 
top left of Fig. 1, could be a collection of exper- 
imentai atmospheric data or a case study spec- 
trum created for our purposes. Because the orig- 
inal spectrum is only a discrete version of a real- 
world, continuous spectrum, both Au and urnax 
must have better resolution and greater range 
than the SIFTS system would be able to attain. 
Usually Au = 0.1 cm-’ and urnax = 120,000 
cm-’ . These choices determine, respectively, the 
best possible interferometric range and resolu- 
tion. They are chosen in order to minimize the 
effects of using discrete data to model infinite, 
continuous realistic spectral characteristics2. 

The second step in creating the spectra and 
interferograms was necessitated by the notation 
and usage of data by the Fast Fourier Trans- 
form (FFT) algorithm. Since a computer can- 
not store data in an array with negative indicies 
(corresponding to negative frequencies in a com- 
plex Fourier transform), a special organizational 
scheme was created to go along with the use of 
the FFT. This scheme allowed for negative fre- 
quencies to be stored in an array after the posi- 
tive. 

For example, if a spectrum has N data points 
indexed from n = 1 to N ,  in order to store the 
N points as distinct individual frequency con- 
tributions, the negative frequencies ( -urnax < 
-On < -urnin) are stored from N / 2  5 n 5 N 
and the positives (0 < On < urn,) stored from 
1 5 n 5 N / 2  where the N / 2  corresponds to both 

’See Section 5.3.2 for a full explanation. 

u = urnax and u = -urnax. This notation both 
implies that N data points will only describe 
N / 2  + 1 distinct frequencies and, for our case, 
N‘ detectors will limit our spectral range and 
resolution by only describing this same amount 
of wavenumbers. [6] 

In order to work with this, all spectra are cre- 
ated such that the whole wavenumber range was 
specified and then copied backwards in the man- 
ner just described resulting in a spectrum twice 
as large. Consequently, after the IDFT is taken 
of the spectrum, the interferograms which hold 
the same form of negative OPDs after the posi- 
tive are composed of N or N‘ data points. 

4.2 Other DFT Considerations 

In aidition t~ these a b v . ~  restrictims, the na- 
ture of the interference phenomenon demanded 
that the interferogram be both real and even 
mathematically. The interferogram has no com- 
plex component and f(-z) = f(z). This re- 
lation for Fourier transform spectrometers has 
been previously derived. [5] The model works 
when the Fourier transform of a real and even 
function is real and even.[4] 

Single-sided interferograms were also assumed 
for the forward model. This implies that only one 
side of the interferogram is placed on the detector 
array such that one half of the symmetric inter- 
ference occupies the whole the array. It is com- 
mon practice in Fourier transform spectroscopy 
for single-sided interferograms to be used based 
on the mathematically even nature of the inter- 
ferogram. 

This technique allows for utilizing the entire 
detector array and in doing so achieves a value 
of z,, twice as large, thereby doubling the res- 
olution. Also, it eliminates redundant use of 
detector elemets. This approach also doubled 
the interferometric resolution and doubled the 
retrieved spectral range. However, determin- 
ing the exact center (zero OPD) is very often 
nearly impossible to find experimentally and will 
therefore cause baseline phase errors in the FFT 
calculation and skew results. For this reason, 
double-sided configurations are also commonly 
used when sensor resolution is significantly be- 
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yond the requirements. 
Since the interferograms made from the input 

spectra used in the forward model are discrete 
data and not a continuous light source, the model 
knows exactly where the zero OPD point is and 
will not produce phase errors. 

4.3 

The pixelization effects of the detector array are 
the most basic of the represented quantities in 
the detection phase. Since the interferogram 
would always be real, even, symmetric and al- 
ways contain an even number of data points, 
certain restrictions were placed on the averaging 
procedure. 

The -we of discrete d ~ t ~  tc? s inda te  both re%!- 

a number of difficulties. The simulated radia- 
tion landing on the detector array consists of dis- 
crete points. However, there is no capability in 
the model for averaging half of a point or possi- 
bly sharing points between detectors. Also, the 
resolution and range choices made for the origi- 
nal spectrum dictate the detector choice proce- 
dure. The organizational scheme needed by the 
FFT allows only for even amounts of detectors 
with the same number of points averaged with 
each detector. Although this is a minor detail, it 
did limit the possible numbers of detectors that 
could be simulated. 

The digitally simulated interferogram f(x) is 
the IDFT of the original spectrum F ( u )  and it is 
averaged in order to display the effects of pix- 
elization. Fkom here, the point at  which the 
maximum OPD is found and all other data be- 
yond this point is thrown out because of Eq. 
( 5 ) .  Then, all whole number common factors 
are found based on this number and all possi- 
ble choices of even number of detectors and how 
many points will be averaged per detector are 
given for the user to decide. The quantity of 
points per detector was denoted as p .  Obviously, 
the choice of the number of detectors will effect 
how many points are averaged together. More 
detectors will mean less points per detector and 
smaller value for Ax‘, which increases the re- 
trieved spectral range. Unfortunately, because 

Pixelizat ion/Det ect or- Averaging 

ity and the res.po;;se of the SIFTS SCi;SGT ca’aa 

of Eq. (6), more detectors does not necessarily 
increase resolution. 

The actual algorithm for averaging points in 
the pixelization process is very simple. The ap- 
proach taken is to average the interferogram’s 
data set p points at a time from beginning to 
end. The restrictions discussed earlier allow 
this to work since the only choices for detec- 
tor configuration would make each detector get 
p points exactly and the data would be again 
symmetric, real and even. Several other averag- 
ing schemes were attempted, but resulted in un- 
known computational effects and unexplainable 
results. This scheme produces a data set that 
was immediately ready for the DFT and trans- 
formation back into the spectrogram, F’(a’). 

4.4 Fiii-Factor 

Preliminary studies were done with fill-factor, 
but were abandoned due to time constraints. 

4.5 Non-Uniformity of the Detector 

The effect of non-uniformity of the detector ar- 
ray was included in some versions of the for- 
ward model. However, for reasonable non- 
uniformities, its effect was minimal compared to 
those of the pixelization process. Therefore, the 
results are not reported here. 

The simulation of non-uniformity in the detec- 
tor array was achieved by multiplying each de- 
tector value by a random number. This number 
was determined by using a normal distribution 
with the mean, p = 1.0 and standard deviation, 
u = 0.1. 

Array 

4.6 Background/Photon Noise 

Up to this point, no code has yet been written or 
implemented in the model for showing the effects 
of background or photon noise on the resolution 
and range of the SIFTS sensor. 

4.7 Mathematical Processing 

In the retrieval phase of the model, apodiza- 
tion is an important step when testing spectra 
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with considerable absorption regions and abrupt 
changes. 

Apodization is done immediately preceeding 
the DFT of the pixelized interferogram. Since 
the data set is situated such that the maximum 
OPD was in the center, the array of data was 
doctored in order that the zero OPD was in the 
center so that the apodizing function would line 
up correctly. Prior to the DFT, the new apodized 
version of f'(z') was placed back in its original 
configuration. 

The apodization function is chosen such that 
feet and other spikes are minimized. Currently, 
a blackman window is being used. However, a 
careful investigation should be done to determine 
if this is the best window function. 

4.8 Retrieved Spectrum Output 

After the retrieved spectrum has been obtained, 
F'(a') can be compared with input spectrum 
F(a) .  The resolution of the retrieved spectrum 
is usually significantly less than the original, so 
some care must be taken to plot both spectra on 
the same scale. 

5 Results 

5.1 Input Spectra 

In testing the forward model, case study spec- 
tra are chosen to determine the results of the 
pixelization process. Of great importance is the 
ability to decipher the effects that pixelization 
has on certain spectral features such as absorp- 
tion regions and spectra closely related to those 
that SIFTS would be analyzing in space appli- 
cations. For this reason, our test cases con- 
sist mainly of simple blackbody spectra at  at- 
mospheric temperatures and similar blackbody 
spectra with artificial absorption regions. 

Future investigations with the forward model 
should utilize the results of previous experiments 
by taking actual high resolution atmospheric 
data and using it as an input spectrum. Fig- 
ure 2 shows a sample spectrogram provided by 
NASA/Langley. Unfortunately, the spectrogram 
was not in a format from which the data could 

TOA Radiance: Standard Atmosphere: H20,C02,03.N20,CH4 
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Figure 2: Example of Spectrogram of Far-IR re- 
gion determined experimentally. 

readily be extracted. Therefore, this spectro- 
gram was not used as an input to our compu- 
tational model. The background lines in Fig. 2 
show blackbody radiation spectra at different 
temperatures. Based on a comparison between 
the actual specta and the blackbody spectra, we 
chose to use blackbody radiation at T = 275 K 
as the standard test input to our computational 
model. 

5.2 Resolution and Range Tradeoffs 

The relationships derived in Section 3.4 indicate 
that the tradeoffs involved with the SIFTS sensor 
will be resolution and range. For example, be- 
cause of Eq. (8),  N' detectors capable of A d  res- 
olution will produce a maximum range of &=. 
However, doubling the resolution to Aa'/2 cuts 
the maximum range in half. 

It is instructive to use numbers that reflect 
the realistic values presented in Fig. 2. For a 
C T ~ =  = 1,000 cm-' with 500 detectors, our spec- 
tral resolution at its best can only be A d  = 4 
cm-' according to Eq. (8). If there 1,000 de- 
tectors, then it is possible to obtain A d  = 2 
cm-' . Fortunately, if a single-sided interfero- 
gram is used (as is assumed in our computational 
model), there is effectively twice as much data 
which will double the resolution. 
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Figure 3: Retrieved spectra from the model with Au' = 2 cm-'. (Note: all figures produced by the 
computational model consist of discrete data. Graphical extrapolation and/or nearness of data points 
makes the graphs appear to be continuous.) 

5.3 High Wavenumber Attenuation 

So far, the computational model's most signifi- 
cant achievement is the prediction of attenuation 
at high wavenumbers caused by the sampling and 
averaging of interferometric data by each detec- 
tor. When any interference pattern is sampled, 
the effects of averaging will smooth out the high- 
est frequencies first. Thus, the retrieved spec- 
trum will have attenuated higher frequencies. 

5.3.1 Blackbody Radiation Spectra 

Figure 3 shows the original blackbody and s u b  
sequent retrieved spectrum output by the model 
with A d  = 2 cm-l. The averaging effect is 
clearly seen as the intensity of the spectrum at 

the higher wavenumbers are significantly more 
attenuated than that at the smaller u. Notice 
also that the figure shows retrievals done with 
both 500 and 1,000 detectors and that the lesser 
number of pixels causes significantly more atten- 
tuation. This is easily explained by realizing that 
if fewer detectors are present, each pixel must 
average over a greater width (remember that we 
are assuming the interferogram can always be ad- 
justed to cover the entire detector array). If the 
detector width Ax' is larger, the retrievable spec- 
tral range is decreased. In addition, if a pixel av- 
erages over a greater area, there is less sensitivity 
to higher frequencies. 

As the spectral resolution requirement is in- 
creased for a retrieved spectrum, attenuation will 
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Figure 4: Retrieved spectra from the model with A d  = 1 cm-'. 

become an even larger problem for the SIFTS 
sensor. For instance, Fig. 4 shows the results 
when Au' = 1 cm-'. The 500 and 1,000 de- 
tector retrieved spectra have attenuated much 
more than those in Fig. 3. This is due to the in- 
creased resolution requirement which has length- 
ened zm, and therefore forced each pixel to av- 
erage over an even larger area producing greater 
attenuation at high wavenumber. Note also that 
at this resolution, it is impossible for the 500 de- 
tector array to yeild data beyond 500 cm-l. 

5.3.2 Spectral Radiance Attenuation 
Plots 

The percentage of spectral radiance lost due to 
the pixelization process is displayed in Fig. 6 for 
the retrievals in Figs. 3 , 4  and 5. Here, ACT' = 1,2 
and 4 cm-' for both 500 and 1,000 detectors. 
Figure 6 is a vivid illustration of how the attenu- 
ation increases with wavenumber. In addition, it 
shows how this effect increases dramatically with 
greater resolution requirements. 

The model predicts that the opposite will re- 
sult if lower resolution is required. A test with 
nCTl = 4 cm-l not only doubles the non-alising 
range but decreases the active averaging 
area of each pixel. Figure 5 shows these results. 
Resolution can be sacrificed for greater range and 
less attenuation at higher wavenumbers. 

Notice that although six attenuation profiles 
are graphed in Fig. 6, only four our visible. This 
is the result of the predictions made earlier with 
the Nyquist criterion that N' detectors with Au' 
resolution Will Produce the Same results as N'/2 
detectors at 2Aa' resolution. 

The spectral radiance attenuation plots aid in 
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Original and Retrieved Spectrums with Ao = 4 cm" 

Figure 5: Retrieved spectra of 500 and 1,000 detectors with Au = 4 cm-l. By trading lower resolution 
the range has been increased and the attenuation minimized. 

testing the computational model. If the origi- 
nal spectrums were created with om= chosen as 
some arbitrary number higher than aka, then 
the choice of om= strongly affects the results that 
the model predicts because of the dependence of 
Ax on cma. If Ax is of similar width compared 
to the detector width, p will be smaller and the 
effects of averaging will not be as harsh as if Ax 
was much smaller than the width of each detec- 
tor. 

Figure 7 shows the effects of increasing omax 
(decreasing Ax) on the attenuation of retrieved 
spectrums with 500 and 1,000 detectors. Notice 
that the effects of increasing the maximum spec- 
tral range seemed to saturate around omax = 
120,000 cm-l. It was found that no signifi- 
cant additional attenuation occurred beyond this 

point. Therefore, as indicated in Sec. 4.1), this 
was the maximum value used in all model calcu- 
lations. 

5.3.3 Blackbody Spectra with Absorp- 
tion 

Spectra with sharp, artificial regions of absorp 
tion were also tested with the model to deter- 
mine the effects of the SIFTS system on smaller 
spectral features. 

Figure 8 shows a retrieved spectrum with 
A d  = 2 cm-' and 1000 detectors. On this 
same graph, the spectral percentage attenuation 
is plotted because it highlights the effects that 
detector averaging has on the absorbed regions. 
A rounding off at the edges of the absorption 
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Figure 6: Spectral percentage attenuation plot for 500 and 1,000 detectors at three different spectral 
resolutions. The cases of A d  = 2 cm-' with 500 detectors and A d  = 1 cm-' with 1000 detectors are 
the same as predicted by Nyquist. Similar results occur with A d  = 4 cm-l with 500 detectors and 
A d  = 2 cm-' with 1000 detectors. 

regions creates large errors in spectral radiance. 
Note also the absorbed regions, especially 

around 275 cm-' in Fig. 8, attenuate in similar 
amounts to the unabsorbed regions surrounding 
them. This suggests that the high wavenumber 
attenuation depends on the arrangement of de- 
tectors and not on the amount of spectral radi- 
ance in any one region. 

The addition of absorption lines into case 
study spectra also shows the necessity for math- 
ematical processing such as apodization in the 
model. Figure 9 shows a retrieved spectrum 
and its corresponding apodized calculation. The 
effect of a window function on regions where 
abrupt changes occur, such as in absorption lines, 

appears to average out false oscillations. 

6 Summary and Conclusions 

The computational model that has been devel- 
oped for the simulation of the SIFTS sensor pro- 
vides an important method for studying the fea- 
sibility of SIFTS for far-IR spectroscopy and its 
possible presence among atmospheric sensors in 
orbit. The relationships developed and modeling 
presented should frame the issues, particularly 
those related to spectral resolution and range. 

The results shown by the model suggest an im- 
portant and possibly detrimental characteristic 
of the detector array's effects on retrieved spec- 
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Figure 7: Graph showing results of changing grnU from 2,000 to 120,000 cm-' 

tra. Since far-IR spectroscopy is heavily con- 
cerned with relative abundances of spectral en- 
ergy in certain absorbed regions, the dependence 
of attenuation on wavenumber may be a difficult 
obstacle to overcome. 

However, the spectral attenuation plots intro- 
duced here provide a possible solution. Each 
attenuation plot provides a unique signature of 
the attenuation of a certain detector configura- 
tion. It should be possible, if these signatures 
are verified experimentally, to use these results 
to compensate for the system induced high wave 
number attenuation. 

The computational model developed in this 
work is not yet complete. The effects of fill- 
factor and photon noise have not been incorpo- 
rated. An attempt has been made to model de- 
tector array non-uniformity, but the preliminary 

results indicated that this should not be a sig- 
nificant factor. Although more work should be 
done, so far it appears that the attenuation ef- 
fects resulting from detector averaging are very 
likely to be the primary performance limitation. 

Perhaps the continuing advances in infrared 
detector array technology will improve the in- 
herent performance limitations of the SIFTS sys- 
tem. Certainly, more detectors will increase the 
unaliased range of far-IR calculations and de- 
crease the spectral attenuation in regions of in- 
terest. 
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